Rekonstruksi Model Matematis Pada Ornamen Pagoda Tian Ti Menggunakan Lindenmayer System

Penulis

  • Muhammad Zia Alghar Universitas Negeri Malang
  • Hakmi Rais Fauzan Universitas Negeri Malang

DOI:

https://doi.org/10.58812/jmws.v3i02.976

Kata Kunci:

Ornamen, Pagoda Tian Ti, Lindenmayer system, Etnomatematika

Abstrak

Ornamen merupakan hiasan memiliki nilai seni dan budaya yang tinggi. Salah satu ornamen yang memiliki nilai budaya yang tinggi dapat ditemukan pada bangunan berbudaya, seperti Pagoda Tian Ti. Penelitian ini berujuan untuk mengembangkan bentuk-bentuk ornamen yang ada pada Pagoda Tian Ti secara matematis. Metode yang digunakan dalam penelitian ini yaitu lindenmayer system. Data diperoleh berdasarkan observasi lapangan, wawancara, dan studi literatur. Hasil penelitian menunjukkan bahwa ornamen pada Pagoda Tian Ti dapat dikaji secara matematis dengan L-system. Rekonstruksi ornamen dengan l-system juga menghasilkan bentuk-bentuk ornamen yang baru. Rekonstruksi ini didasarkan pada perubahan rasio, perubahan bentuk dasar, dan perubahan sudut. Hasil rekonstruksi ini menjadi jembatan bagi penelitian lain  selanjutnya dalam merekonstruksi ornamen-ornamen berbudaya lainnya secara matematis.

Referensi

Akbar, L. A., Alghar, M. Z., Marhayati, & Susanti, E. (2023). The Arithmetic Sequences in Making Traditional Cast Nets in Lombok. Edumatika: Jurnal Riset Pendidikan Matematika, 6(1), 13–29. https://doi.org/10.32939/ejrpm.v6i1.2541

Akhmad, N. (2020). Ensiklopedia keragaman budaya. Alprin.

Albanese, V., & Perales, F. J. (2020). Mathematics Conceptions by Teachers from an Ethnomathematical Perspective. Bolema: Boletim de Educação Matemática, 34(66), 1–21. https://doi.org/10.1590/1980-4415v34n66a01

Alghar, M. Z. (2020). Pemodelan batang tanaman menggunakan metode Deterministic Lindenmayer System. UIN Maulana Malik Ibrahim Malang.

Alghar, M. Z., & Jamaluddin. (2024). Ethnomodelling: Fractal Geometry On The Door Ornament Of The Sumenep Palace Using The Lindenmayer System. Euclid, 11(1), 1–16. https://doi.org/10.33603/x5gk7n46

Alghar, M. Z., & Marhayati. (2023). Ethnomathematics: Exploration of Fractal Geometry in Gate Ornaments of The Sumenep Jamik Mosque Using The Lindenmayer System. Indonesian Journal of Science and Mathematics Education, 6(3), 311–329. https://doi.org/10.24042/ijsme.v6i3.18219

Alghar, M. Z., Susanti, E., & Marhayati. (2022). Ethnomathematics: Arithmetic Sequence Patterns Of Minangkabau Carving On Singok Gonjong. Jurnal Pendidikan Matematika (Jupitek), 5(2), 145–152. https://doi.org/10.30598/jupitekvol5iss2pp145-152

Alghar, M. Z., Walidah, N. Z., & Marhayati. (2023). Ethnomathematics: The exploration of fractal geometry in Tian Ti Pagoda using the Lindenmayer system. Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, 5(1), 57–69. https://doi.org/10.35316/alifmatika.2023.v5i1.57-69

Ari, A. A. (2022). Türk Kültüründen Etnomodelleme Yansımaları. Kesit Akademi, 8(33), 200–223. https://doi.org/10.29228/kesit.66661

Beer, R. (2004). The encyclopedia of Tibetan symbols and motifs. Serindia Publications.

Bernard, J., & McQuillan, I. (2021). Techniques for inferring context-free Lindenmayer systems with genetic algorithm. Swarm and Evolutionary Computation, 64(100893), 1–12. https://doi.org/10.1016/j.swevo.2021.100893

Cortes, D. P. de O., Orey, D. C., & Rosa, M. (2023). Aspectos teóricos, empíricos e metodológicos de pesquisas em etnomodelagem: contribuições dos investigadores do GPEUfop. Journal of Mathematics and Culture, 17(1), 1–24.

D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the learning of Mathematics, 5(1), 44–48.

D’Ambrosio, U. (2015). Mathematical modelling as a strategy for building-up systems of knowledge in different cultural environments. In G. A. Stillma, W. Blum, & M. S. Biembengut (Ed.), Mathematical modelling in education research and practice: cultural, social and cognitive influences (pp. 35–44). Springer. https://doi.org/10.1007/978-3-319-18272-8_2

D’Ambrosio, U. (2016). An Overview of the History of Ethnomathematics. In M. Rosa, U. D’Ambrosio, D. C. Orey, L. Shirley, W. V Alangui, P. Palhares, & M. E. Gavarrete (Ed.), Current and Future Perspectives of Ethnomathematics as a Program (pp. 5–10). Springer International Publishing. https://doi.org/10.1007/978-3-319-30120-4_2

Ditasona, C. (2018). Ethnomathematics exploration of the Toba community: Elements of geometry transformation contained in Gorga (ornament on Bataks house). In Ramli, M. Azhar, & R. Sumarmin (Ed.), IOP Conference Series: Materials Science and Engineering (pp. 1–6). Universitas Negeri Padang. https://doi.org/10.1088/1757-899X/335/1/012042

Dutra, É. D. R., Orey, D. C., & Rosa, M. (2021). Etnomodelando artefatos (balaios) da cultura cafeeira. Revista De Ensino De Ciências E Matemática, 12(2), 1–20. https://doi.org/10.26843/rencima.v12n2a15

Dutra, É. D. R., Orey, D. C., & Rosa, M. (2023). Utilizando os jargões da cultura cafeeira como uma ação pedagógica para a etnomodelagem. Journal of Mathematics and Culture, 17(2), 62–80.

Dye, D. S. (2012). Chinese lattice designs. Courier Corporation.

Fitriza, R. (2018). Ethnomathematics Pada Ornamen Rumah Gadang Minangkabau. Math Educa Journal, 2(2), 181–190. https://doi.org/10.15548/mej.v2i2.187

Ilmiyah, N. F., Sa’idah, Z. N., & Wijaya, I. K. (2021). A culture-based development of mathematics learning: A case on the Muhammad Cheng Hoo Mosque of Surabaya. International Journal on Teaching and Learning Mathematics, 4(1), 1–14.

Juhari, & Alghar, M. Z. (2021). Modeling Plant Stems Using the Deterministic Lindenmayer System. Journal Cauchy, 6(4), 286–295. https://doi.org/10.18860/ca.v6i4.11591

Kharisudin, N. Z., & Iqbal. (2021). A Systematic Literature Review: Characteristic of Ethnomathematical-Based Subject Specific Pedagogy. Technium Soc. Sci. J. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/techssj24&section=7

Küçük, A. (2014). Ethnomathematics in Anatolia-Turkey: Mathematical Thoughts in Multiculturalism. Revista Latinoamericana de Etnomatemática Perspectivas Socioculturales de la Educación Matemática, 7(1), 171–184.

Nahak, H. M. I. (2019). Upaya melestarikan budaya indonesia di era globalisasi. Jurnal Sosiologi Nusantara, 5(1), 65–76.

Orey, D. C. (2017). The critical-reflective dimension of ethnomodelling. In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Ed.), Ethnomathematics and its Diverse Approaches for Mathematics Education (pp. 329–354). Springer. https://doi.org/10.1007/978-3-319-59220-6_14

Orey, D. C., & Rosa, M. (2021). Ethnomodelling as a glocalization process of mathematical practices through cultural dynamism. The Mathematics Enthusiast, 18(3), 439–468. https://doi.org/10.54870/1551-3440.1533

Orey, D. C., & Rosa, M. (2022). A Pedagogical Action Of Ethnomodelling For The Implemenation Of The Law 11.645/08. ReDiPE: Revista Diálogos e Perspectivas em Educação, 4(2), 192–207.

Prusinkiewicz, P., & Hanan, J. (2013). Lindenmayer systems, fractals, and plants. Springer Science & Business Media.

Prusinkiewicz, P., & Lindenmayer, A. (2012). The algorithmic beauty of plants. Springer Science & Business Media.

Radjak, D. S., Susanti, E., & Marhayati, M. (2022). Eksplorasi Konsep Matematika Pada Gapura Monumen Trikora di Lembeh Sulawesi Utara. In A. Abdussakir, M. Jamhuri, & J. Juhari (Ed.), Prosiding SIMaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islam) (pp. 95–105).

Riegl, A. (2018). Problems of style: Foundations for a history of ornament. Princeton University Press.

Rosa, M., D’Ambrosio, U., Orey, D. C., Shirley, L., Alangui, W. V, Palhares, P., Gavarrete, M. E., Rosa, M., & Orey, D. C. (2016). State of the art in Ethnomathematics. In G. Kaiser (Ed.), Current and Future Perspectives of Ethnomathematics as a Program (pp. 11–37). Springer. https://doi.org/10.1007/978-3-319-30120-4_3

Rosa, M., & Orey, D. C. (2017). Ethnomodelling as the Mathematization of Cultural Practices. In G. A. Stillman, W. Blum, & G. Kaiser (Ed.), Mathematical Modelling and Applications Crossing and Researching Boundaries in Mathematics Education (pp. 153–162). Springer. https://doi.org/10.1007/978-3-319-62968-1_13

Soepratno, S. (1997). Ornamen Ukir Kayu Tradisional Jawa (2 ed.). IKIP Semarang.

Tamur, M., Wijaya, T. T., Nurjaman, A., Siagian, M. D., & Perbowo, K. S. (2023). Ethnomathematical Studies in the Scopus Database Between 2010-2022: A Bibliometric Review. In S. Menggo, M. Tamur, & H. Midun (Ed.), Proceedings of the 2nd International Conference on Education, Humanities, Health and Agriculture (pp. 199–204). https://doi.org/10.4108/eai.21-10-2022.2329666

Wanaputri, D. A. (2015). Kajian Ornamen Pagoda Cina Di Pulau Kemaro Palembang Sumatera Selatan. In Universitas Negeri Yogyakarta. Universitas Negeri Yogyakarta.

Welch, P. B. (2013). Chinese art: A guide to motifs and visual imagery. Tuttle Publishing.

Yuniana, E. R. (2016). Pagoda Tian Ti Studi Deskriptif Mengenai Makna Simbol pada Bangunan Pagoda Tian Ti di Kenpark, Surabaya. [A Descriptive Study of the Symbolic Meanings of the Tian Ti Pagoda Building in Kenpark, Surabaya]. [Unpublished Thesis]. Universitas Airlangga.

Zilhão, J. (2007). The emergence of ornaments and art: an archaeological perspective on the origins of “behavioral modernity.” Journal of archaeological research, 15, 1–54.

Unduhan

Diterbitkan

2024-02-27

Cara Mengutip

Alghar, M. Z., & Fauzan, H. R. (2024). Rekonstruksi Model Matematis Pada Ornamen Pagoda Tian Ti Menggunakan Lindenmayer System. Jurnal Multidisiplin West Science, 3(02), 144–155. https://doi.org/10.58812/jmws.v3i02.976