Pengelolaan Dan Optimalisasi Model Sumberdaya Air Tanah Dengan Metode Simulasi (Studi Literatur)
DOI:
https://doi.org/10.58812/jmws.v2i04.281Kata Kunci:
Pemodelan Air Tanah, Metode Optimalisasi, Pengelolaan, Metode SimulasiAbstrak
Pengelolaan aliran air tanah adalah tugas yang menantang di seluruh dunia diakibatkan meningkatnya permintaan air untuk keperluan industri, pertanian, dan domestik serta menyusutnya sumber daya. Berbagai solusi dapat dipertimbangkan untuk mengatasi masalah pengelolaan air tanah, tetapi efektivitas semua solusi dan kombinasinya tidak dapat diverifikasi dengan eksperimen lapangan. Mengingat kemampuan prediktifnya, pemodelan air tanah dengan simulasi seringkali merupakan satu-satunya cara yang layak untuk memberikan masukan bagi keputusan pengelolaan karena model tersebut dapat memperkirakan kemungkinan dampak dari strategi pengelolaan air tertentu. Pemodelan aliran air tanah memerlukan manajemen optimalisasi untuk melakukan estimasi serta memprediksikan pergerakan air tanah pada akuifer. Makalah ini mengulas berbagai metode optimalisasi yang telah digunakan untuk memecahkan masalah perencanaan dan pengelolaan air tanah serta menyajikan tinjauan dari aplikasi pemodelan simulasi untuk pengelolaan sumber daya air tanah. Metode optimalisasi telah digunakan dalam pemodelan air tanah, perencanaan dan pengelolaan sistem air tanah. Metode optimalisasi tersebut meliputi teknik pemrograman matematis seperti pemrograman linier, kuadratik, dinamis, stokastik, non linier, dan algoritma pencarian global seperti algoritma genetika, simulasi annealing, dan pencarian tabu. Model simulasi aliran air tanah telah digunakan oleh banyak peneliti untuk memecahkan masalah yang relatif kompleks dalam pengelolaan air tanah, irigasi, dan drainase. Beberapa peneliti merekomendasikan penggunaan beberapa model untuk mengatasi keterbatasan model tertentu.
Referensi
Assouline, S., Russo, D., Silber, A., & Or, D. (2015). Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resources Research, 51(5), 3419-3436.
Babajimopoulos, C., Panoras, A., Georgoussis, H., Arampatzis, G., Hatzigiannakis, E., & Papamichail, D. (2007). Contribution to irrigation from shallow water table under field conditions. Agricultural Water Management, 92(3), 205-210.
Bastani, M., & Harter, T. (2020). Effects of upscaling temporal resolution of groundwater flow and transport boundary conditions on the performance of nitrate-transport models at the regional management scale. Hydrogeology Journal, 28(4).
Bonfante, A., Basile, A., Acutis, M., De Mascellis, R., Manna, P., Perego, A., & Terribile, F. (2010). SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in Northern Italy. Agricultural Water Management, 97(7), 1051-1062.
Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 1-6.
Brunner, P., Franssen, H. J. H., Kgotlhang, L., Bauer-Gottwein, P., & Kinzelbach, W. (2007). How can remote sensing contribute in groundwater modeling?. Hydrogeology journal, 15(1), 5-18.
Carpenter, T. M., & Georgakakos, K. P. (2006). Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of hydrology, 329(1-2), 174-185.
Carrera-Hernandez, J. J., & Gaskin, S. J. (2006). The groundwater modeling tool for GRASS (GMTG): open source groundwater flow modeling. Computers & Geosciences, 32(3), 339-351.
Dey, S., & Prakash, O. (2020). Management of saltwater intrusion in coastal aquifers: an overview of recent advances. Environmental Processes and Management, 321-344.
Eishoeei, E., Nazarnejad, H., & Miryaghoubzadeh, M. (2019). Temporal soil salinity modeling using SaltMod model in the west side of Urmia hyper saline Lake, Iran. Catena, 176, 306-314.
Fienen, M. N., & Arshad, M. (2016). The international scale of the groundwater issue. In Integrated groundwater management (pp. 21-48). Springer, Cham.
Foster, S., & Garduño, H. (2013). Groundwater-resource governance: are governments and stakeholders responding to the challenge?. Hydrogeology Journal, 21(2), 317-320.
Ghouili, N., Horriche, F. J., Zammouri, M., Benabdallah, S., & Farhat, B. (2017). Coupling WetSpass and MODFLOW for groundwater recharge assessment: case study of the Takelsa multilayer aquifer, northeastern Tunisia. Geosciences Journal, 21(5), 791-805.
Gorelick, S. M., & Zheng, C. (2015). Global change and the groundwater management challenge. Water Resources Research, 51(5), 3031-3051.
Hamlat, A., & Guidoum, A. (2018). Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Applied Water Science, 8(8), 1-13.
Hughes, J. D., Langevin, C. D., & Banta, E. R. (2017). Documentation for the MODFLOW 6 framework (No. 6-A57). US Geological Survey.
Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J. D., Ross, A., Arshad, M., & Hamilton, S. (2016). Integrated groundwater management: an overview of concepts and challenges. Integrated groundwater management, 3-20.
Janža, M. (2015). A decision support system for emergency response to groundwater resource pollution in an urban area (Ljubljana, Slovenia). Environmental Earth Sciences, 73(7), 3763-3774.
Jhorar, R. K., Smit, A. A. M. F. R., & Roest, C. W. J. (2009). Assessment of alternative water management options for irrigated agriculture. Agricultural Water Management, 96(6), 975-981.
Jia, X., Hou, D., Wang, L., O'Connor, D., & Luo, J. (2020). The development of groundwater research in the past 40 years: A burgeoning trend in groundwater depletion and sustainable management. Journal of Hydrology, 587, 125006.
Karatzas, G. P. (2017). Developments on modeling of groundwater flow and contaminant transport. Water Resources Management, 31(10), 3235-3244.
Kori, S. M., Qureshi, A. L., Lashari, B. K., & Memon, N. A. (2013). Optimum strategies of groundwater pumping regime under scavenger tubewells in lower Indus Basin, Sindh, Pakistan. International Water Technology Journal, 3(3), 138-145.
Lee, J., & Leyffer, S. (Eds.). (2011). Mixed integer nonlinear programming (Vol. 154). Springer Science & Business Media.
Li, S., Wu, M., Jia, Z., Luo, W., Fei, L., & Li, J. (2021). Study on drainage strategy of ditch wetland in semi-arid area under the influence of inflow from the upstream irrigation area. Agricultural Water Management, 248, 106792.
Lo, W. C., Sposito, G., Lee, J. W., & Chu, H. (2016). One-dimensional consolidation in unsaturated soils under cyclic loading. Advances in Water Resources, 91, 122-137.
Malenica, L., Gotovac, H., Kamber, G., Simunovic, S., Allu, S., & Divic, V. (2018). Groundwater flow modeling in karst aquifers: Coupling 3d matrix and 1d conduit flow via control volume isogeometric analysis—experimental verification with a 3d physical model. Water, 10(12), 1787.
Mays, L. W. (2013). Groundwater resources sustainability: past, present, and future. Water Resources Management, 27(13), 4409-4424.
Mimoun, D., Gaur, S., & Graillot, D. (2011). Integrated Hydrologic Modeling: Biodiversity and Functions of Alluvial System Facing Severe Droughts Induced by Global Change. In Conference MODFLOW and More.
Mousavi, J. (2014). Water Resource Systems Analysis and Management-Amirkabir University of Technology.
Okocha, F. O., & Atakpo, E. (2013). Groundwater flow modeling at the source of river Ethiope, Delta state, Nigeria. Pacific Journal of Science and Technology, 14(2), 594-600.
Omran, E. S. E. (2016). A stochastic simulation model to early predict susceptible areas to water table level fluctuations in North Sinai, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 235-257.
Quan, T. Q., Meert, P., Huysmans, M., & Willems, P. (2020). On the importance of river hydrodynamics in simulating groundwater levels and baseflows. Hydrological Processes, 34(8), 1754-1767.
Querner EP, Jansen PC, van den Akker JJH, Kwakernaak C.( 2012). Analysing water level strategies to reduce soil subsidence in Dutch peat meadows. J Hydrol;446–447:59–69.
Raul, S. K. (2012). Simulation-optimization modelling for integrated land and water resources management in the Hirakud canal command (Doctoral dissertation, IIT Kharagpur).
Saba, N., Umar, R., & Ahmed, S. (2016). Assessment of groundwater quality of major industrial city of Central Ganga plain, Western Uttar Pradesh, India through mass transport modeling using chloride as contaminant. Groundwater for Sustainable Development, 2, 154-168.
Singh, A. (2013). Groundwater modelling for the assessment of water management alternatives. Journal of Hydrology, 481, 220-229.
Singh, A. (2014). Irrigation planning and management through optimization modelling. Water resources management, 28(1), 1-14.
Singh, A. (2016). Hydrological problems of water resources in irrigated agriculture: A management perspective. Journal of Hydrology, 541, 1430-1440.
Singh, A. (2018). Alternative management options for irrigation-induced salinization and waterlogging under different climatic conditions. Ecological Indicators, 90, 184-192.
Singh, A., & Panda, S. N. (2013). Optimization and simulation modelling for managing the problems of water resources. Water resources management, 27(9), 3421-3431
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Muhamad Tri Aditya
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.