Comparative Analysis of The Percentage of Poor People in Indonesia Between Urban and Rural Areas in 2023

Rima Aulia¹, Naila Putri Salamah², Marciana Siendy Batlayangin³, Siti Hajar⁴

¹Universitas Nusa Putra and rima.aulia_mn23@nusaputra.ac.id
²Universitas Nusa Putra and naila.putri_mn23@nusaputra.ac.id
³Universitas Nusa Putra and marciana.siendy_mn23@nusaputra.ac.id
⁴Universitas Nusa Putra and siti.hajar@nusaputra.ac.id

ABSTRACT

This study aims to compare the poverty rates of rural and urban residents in Indonesia in 2023. Quantitative data comes from the Central Statistics Agency (BPS) in 2023. The analysis methods used include descriptive analysis, normality test, homogeneity test, and Mann-Whitney test. The normality test is conducted to ensure that the distribution of poverty data follows a normal distribution. The homogeneity test tests whether the variance of poverty data in rural and urban areas is the same. The Mann-Whitney test, which is an alternative nonparametric T-test, was used to determine whether there is a significant difference between rural and urban poverty rates, assuming the data is normally distributed or homoskedastic. The results show that there is a large difference in poverty rates between rural and urban areas, where poverty rates in rural areas are higher than in urban areas. These results suggest that more targeted and strategic policy interventions are needed to reduce rural poverty.

Keywords: Poverty, Normality Test, Homogeneity Test, Mann-Whitney Test

INTRODUCTION

Poverty is a complex and multi-faceted social problem that has a significant impact on the economy and the welfare of society. In Indonesia, poverty is a major issue that is continuously discussed by the government and society. One important aspect of poverty analysis is to understand the differences in poverty conditions between rural and urban areas. This is important to identify the factors that influence poverty in each region and formulate appropriate policies to effectively reduce the poverty threshold.

According to data collected in 2023 by the Central Bureau of Statistics (BPS), there is a significant difference in the perception of poverty between rural and urban areas in Indonesia. This
data shows that poverty rates in rural areas are consistently higher than in urban areas. This difference may be due to various factors such as access to daily information, work-related stress, education, and health services.

The purpose of this study is to compare the perception of poverty in Indonesia between urban and rural areas in 2023. This analysis was conducted using several statistical methods, including the Mann-Whitney test, normality test, and homogeneity test. The normality test is used to determine whether the distribution of data on the number of poor people in urban and rural areas follows a normal distribution. This is important because many parametric statistical tests require that the data being analyzed must be normally distributed.

The purpose of the homogeneity test is to determine whether the differences in the perceptions of the poor in the two regions are the same. This test is very important to determine the more detailed analysis method to be used, whether parametric or nonparametric tests. The Mann-Whitney test is a non-parametric statistical test used to compare two independent samples that do not follow a normal distribution and have inhomogeneous variations. This test will help determine if there is a significant difference between the perceptions of the poor towards penetration land and rural land. Through this analysis, it is hoped that it can provide further understanding of the characteristics of the poor in Indonesia and provide support for more effective policy making in both regions. This research is also expected to contribute to the academic literature on economic conditions and trends in Indonesia.

METHODS

A. Research Design
This study uses a quantitative comparative design with cross-sectional analysis. The aim is to compare the perceptions of the poor in rural and urban areas in Indonesia in 2023. This approach allows the analysis of differences at a single point in time using relevant statistical data.

B. Population and Sample
Population: The population in this study includes all Indonesian citizens as reported in BPS statistics for 2023. This population includes various demographic, economic, and geographic groups, both at home and abroad.

Sample: The sample used in this study is data on the percentage of poor people in each province in Indonesia, which is divided into two main categories: urban and rural. Purposive sampling is the method used in the sample selection to ensure that the data collected is representative and in line with the research objectives. The total sample used is based on data from 34 provinces in Indonesia, which are then classified based on the BPS classification system for land area and land use.

C. Data Source
The data used in this study is secondary data obtained from the Indonesian Central Bureau of Statistics (BPS). This data includes information on the percentage of poor people in urban and rural areas in 2023. BPS data was chosen because it is considered credible and accurate in providing national statistical information.

D. Data Collection Technique
Data was obtained through searches conducted on the official BPS website and through other official publications issued by BPS. The data collected included the percentage of poor people in each province, which was then analyzed based on urban and rural areas. This data was systematically collected and incorporated into the software's analytical approach to determine further requirements.

E. Data Analysis Technique

The data analysis technique used in this research includes several stages as follows:

1. Normality Test

 The normality test is used to determine whether the distribution of data on the percentage of poor people in urban and rural areas follows a normal distribution.

 This test is important because it shows how to perform more rigorous statistical analysis. Kolmogorov's test is used to assess normality because it is effective for sample sizes >30. The decision-making criteria are:
 1) If p-value > 0.05, then the data is normally distributed.
 2) If the p-value ≤ 0.05, then the data is not normally distributed.

2. Homogeneity Test

 The homogeneity test was conducted to assess the similarity between two groups of data, namely the percentage of poor people in urban and rural areas. This test is important to ensure that the variances of the two groups are homogeneous, which is required for some more in-depth statistical analysis. Levene's test was conducted using the following criteria:
 1) If p-value > 0.05, then the data variance is homogeneous.
 2) If the p-value ≤ 0.05, then the data variance is not homogeneous.

3. Mann Whitney Test

 The Mann-Whitney test was used to compare the median percentage of poor people between urban and rural areas. This test is used because it does not require assumptions of normality and consistency for data that are not normally distributed or have inhomogeneous variations. The decision criteria are:
 1) If the p-value is more than 0.05, then there is no significant difference between the perceptions of the urban and rural poor.
 2) If the p-value is less than 0.05, there is a significant difference between the perceptions of the urban and rural poor.

F. Research Procedure

1) Data Collection: The data were downloaded from the BPS website and checked to ensure completeness and validity. The data was then organized by urban and rural areas.

2) Normality Test: A normality test was conducted on the data of the percentage of poor people to determine whether the data was normally distributed or not.

3) Homogeneity Test: A homogeneity test was conducted to check whether the variance of the data between the two groups (urban and rural) was homogeneous.
4) **Mann-Whitney Test**: After the normality and homogeneity tests, because the data was not normally distributed, a nonparametric Mann-Whitney test was used to compare the percentage of poor people between urban and rural areas.

5) **Interpretation of Results**: The results of each stage of the test were analyzed and interpreted to draw conclusions about the differences in the percentage of poor people between urban and rural areas.

G. Software Analysis

Data analysis was conducted using statistical software such as SPSS or R. These software techniques were used to conduct homogeneity, normality, and Mann-Whitney tests and interpret the results of the statistical analysis correctly.

With this methodology, it is hoped that the research can provide comprehensive information on the differences in poverty rates between provinces and regions in Indonesia, as well as a sharp reference for formulating more effective policy measures in poverty reduction in various regions.

RESULT AND DISCUSSION

The Kolmogorov test serves as a Distribution Conformity Test, it compares the cumulative distribution of the sample data with the cumulative distribution of the expected theoretical distribution (in this case, the normal distribution). Generalization, can be used to test the suitability of data to other theoretical distributions, not just the normal distribution. Difference Detection, Identifies significant differences between the distribution of the sample data and the normal distribution.
Based on the SPSS output table, it is known that both in the Kolmogorov-Smirnov test the significance value Asymp Signification (2-tailed) 0.00 <0.05. So in accordance with the basis for decision making in the Kolmogorov-Smirnov normality test above, it can be concluded that the data is not normally distributed. Thus, the assumption or requirement of normality in the regression model is not met.

A. Homogeneity Test

Homogeneity test is one of the testing methods in statistics to determine whether two or more samples from different populations have the same distribution of variance or characteristics. The homogeneity test was conducted as a prelude to the Independent Sample T Test and Analysis of Variance (Anova) analysis.

![Histogram](image)

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>Unstandardized Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>69</td>
</tr>
<tr>
<td>Normal Parameters(^a,b)</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td>Absolute</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Test Statistic</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td></td>
</tr>
</tbody>
</table>

- \(^a\) Test distribution is Normal.
- \(^b\) Calculated from data.
- \(^c\) Lilliefors Significance Correction.

Vol. 03, No. 07, Juli 2024, pp. 936-943
1. Hipotesis
 The null hypothesis (H0) states that the two populations have the same distribution values, and the alternative hypothesis (H1) indicates that the two populations have different distribution values.

<table>
<thead>
<tr>
<th>Test of Homogeneity of Variances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>poverty rate indonesia</td>
</tr>
<tr>
<td>Based on Mean</td>
</tr>
<tr>
<td>Based on Median</td>
</tr>
<tr>
<td>Based on Median and with adjusted df</td>
</tr>
<tr>
<td>Based on trimmed mean</td>
</tr>
</tbody>
</table>

Based on the SPSS output table, the significance value (Sig.) for all tests (based on mean, median, median with adjusted df, and trimmed mean) is 0.02 <0.05. So in accordance with the basis for decision making in the homogeneity test above, it can be concluded that the data is not normally distributed (H1). This indicates that there is a significant difference in the variance of poverty rates in rural and urban areas.

B. Mann Whitney Test
 The Mann Whitney U Test is also known as the Wilcoxon Rank Sum Test. It is a nonparametric test option if the Independent T Test cannot be done because the normality assumption is not met.
 Based on the normality and homogeneity tests that have been carried out previously, the data is proven to be abnormally distributed. So, to overcome this, the non-parametric Mann whitney u test is used.

1. Hypothesis Testing Criteria
 1) If the p-value ≤ 0.05, the null hypothesis (H0) is rejected.
 2) If the p-value > 0.05, then the null hypothesis (H0) fails to be rejected.

The following is the SPSS output table for the mann whitney test

<table>
<thead>
<tr>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>poverty indonesia rate rural</td>
</tr>
</tbody>
</table>
Based on the test results, the p-value (0.000) is much smaller than the significance level of 0.05, thus the null hypothesis (H0) is rejected and (H1) is accepted. This means that there is a significant difference in poverty rates between urban and rural areas.

CONCLUSION

Based on the research in the previous chapter, it can be concluded that there are significant differences in poverty rates between urban and rural areas in Indonesia. The main conclusion points follow:

1. Higher Poverty Rates in Rural Areas: The results show that poverty rates in rural areas are consistently higher than those in urban areas. This indicates that the problem of poverty is more severe in rural areas.

2. Normality and Homogeneity Test: The poverty data does not follow a normal distribution and has inhomogeneous variance. The Kolmogorov-Smirnov test and Levene test show that the data is not normally distributed and there is a significant difference in the variance of poverty rates between urban and rural areas.
3. Mann-Whitney Test: The Mann-Whitney non-parametric statistical test was used because the data was not normally distributed. The test results show a very low p-value (0.000), indicating a significant difference in poverty rates between urban and rural areas.

4. More Targeted Policies: The findings suggest that more targeted and strategic policy interventions are needed to reduce poverty in rural areas. The government needs to focus on factors that influence rural poverty, such as access to information, education, health services, and employment conditions.

Thus, this research provides important insights for the formulation of more effective policies in addressing poverty, especially in rural areas in Indonesia. The government may be able to reduce poverty inequality by improving village infrastructure, improving access to education and training for rural communities, improving health services, supporting the economy in both agriculture and village MSMEs, facilitating access to information, and improving cooperation between institutions. Improve cooperation between the central government, local governments, NGOs, and the private sector in developing and implementing holistic and integrated poverty alleviation programs. With this implementation, it is expected that there will be a reduction in the poverty rate in rural areas and an increase in the overall welfare of the population.

REFERENCE
Shapiro, S. S. (1965). "An Analysis of Variance Test for Normality (Complete Samples).".