Analisis Sistem Agrometeorologi dalam Meningkatkan Ketahanan Pangan saat Kemarau

Penulis

  • Gusti Rusmayadi Universitas Lambung Mangkurat
  • Umi Salawati Universitas Lambung Mangkurat
  • Dewa Oka Suparwata Universitas Muhammadiyah Gorontalo

DOI:

https://doi.org/10.58812/jgws.v1i03.720

Kata Kunci:

Ketahanan pangan, Kekeringan, Sistem agrometeorology, Praktik pertanian, Pemangku kepentingan, Peningkatan aksesibilitas data

Abstrak

Ketahanan pangan di Jawa Barat, Indonesia, terancam oleh meningkatnya frekuensi dan tingkat keparahan kekeringan yang disebabkan oleh perubahan iklim. Sistem agrometeorologi, yang mengintegrasikan data meteorologi dengan praktik pertanian, menawarkan solusi yang menjanjikan untuk memitigasi dampak kekeringan terhadap ketahanan pangan. Studi penelitian dengan metode campuran ini menilai status dan efektivitas sistem agrometeorologi saat ini di Jawa Barat, mengeksplorasi perspektif pemangku kepentingan, mengidentifikasi tantangan dan peluang, dan memberikan rekomendasi berbasis bukti. Temuan menunjukkan bahwa meskipun banyak petani yang mengetahui tentang layanan agrometeorologi, tingkat pemanfaatannya bervariasi, dengan pertanian komersial yang lebih besar lebih cenderung menggunakan layanan ini. Petani yang mengakses data agrometeorologi melaporkan bahwa mereka melakukan penyesuaian strategis terhadap praktik pengelolaan tanaman. Para pemangku kepentingan menekankan perlunya peningkatan aksesibilitas data, penyesuaian saran, pengembangan kapasitas, dan integrasi data. Tantangan yang dihadapi termasuk aksesibilitas data yang terbatas dan kebutuhan akan inisiatif pengembangan kapasitas yang komprehensif. Peluang yang ada meliputi dukungan pemerintah, integrasi data, dan munculnya inisiatif berbasis masyarakat. Penelitian ini menggarisbawahi potensi sistem agrometeorologi untuk meningkatkan ketahanan pangan di Jawa Barat jika tantangan-tantangan utama dapat diatasi.

Referensi

Ali, S., Basit, A., Makanda, T. A., Inamullah, Khan, F. U., Sajid, M., Riaz, T., Abbasi, H. F., Manzoor, & Sohail, A. (2023). Improving drought mitigation strategies and disaster risk reduction through MODIS and TRMM-based data in relation to climate change over Pakistan. Environmental Science and Pollution Research, 30(14), 40563–40575.

Alves, H., Jardim, A., Souza, L. S. B. de, & Silva, T. G. F. da. (2018). The application of agrometeorological techniques contributes to the agricultural resilience of forage cactus: A review. Amazonian Journal of Plant Research, 2(3), 207–220.

Colombelli-Négrel, D., Nur, D., Auricht, H. C. C., Clarke, K. D., Mosley, L. M., & Dann, P. (2022). Combined Effects of Hydrological Drought and Reduced Food Availability on the Decline of the Little Penguins in South Australia. Frontiers in Marine Science, 9, 875259.

Estiningtyas, W., & Dermoredjo, S. K. (2021). Characteristics and farmer’s response to climate variability to support sustainable agriculture: case study in Tasikmalaya, West Java. IOP Conference Series: Earth and Environmental Science, 653(1), 12004.

Farooq, M. S., Uzair, M., Raza, A., Habib, M., Xu, Y., Yousuf, M., Yang, S. H., & Ramzan Khan, M. (2022). Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Frontiers in Plant Science, 13, 927535.

Gao, H., Xin, H., Huang, L., Li, Z., Huang, W., Wu, C., & Ju, P. (2022). Common-Mode Frequency in Converter-Integrated Power Systems: Definition, Analysis, and Quantitative Evaluation. IEEE Transactions on Power Systems, 37(6), 4846–4860.

Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2973–2989.

Gupta, A., Mishra, R., Rai, S., Bano, A., Pathak, N., Fujita, M., Kumar, M., & Hasanuzzaman, M. (2022). Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture. International Journal of Molecular Sciences, 23(7), 3741.

Hidayat, P., Maryana, E., Kusumah, Y. M., & Nurulaila, L. (2020). Host range and population density of the giant whitefly Aleurodicus dugesii Cockerell (Hemiptera: Aleyrodidae) on horticultural crops in Cipanas-Cianjur, West Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 468(1), 12008.

Korčok, M., Calle, J., Veverka, M., & Vietoris, V. (2022). Understanding the health benefits and technological properties of β-glucan for the development of easy-to-swallow gels to guarantee food security among seniors. Critical Reviews in Food Science and Nutrition, 1–18.

Kreković, D., & Žarko, I. P. (2022). Prediction of Microclimate Parameters for Application in Precision Agriculture. 2022 International Conference on Smart Systems and Technologies (SST), 361–366.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627.

Lub, P., Berezovetsky, S., Padyuka, R., & Chubyk, R. (2022). Information-analytical support of project management processes with the use of simulation modeling methods. CEUR Workshop Proceedings, 3109, 53–57.

Marín-González, O., Parsons, D., Arnes-Prieto, E., & Díaz-Ambrona, C. G. H. (2018). Building and evaluation of a dynamic model for assessing impact of smallholder endowments on food security in agricultural systems in highland areas of central America (SASHACA). Agricultural Systems, 164, 152–164.

Marzec, J. (2022). Early warning mechanisms for global crises in non-governmental organisations. Przegląd Europejski, 3, 113–121.

Moteva, M., Kazandjiev, V., & Georgieva, V. (2015). Climatological and Meteorological Information for Future Sustainable Agriculture in Bulgaria. Environment, Ecology and Sustainability at the Beginning of 21st Century, Chief Ed. Prof. Recep Efe, St. Kliment Ohridski University Press, 91–111.

Ruminta, R., Wahyudin, A., & Wiratmo, J. (2017). THE DECREASE IN RICE PRODUCTION DUE TO CLIMATE CHANGE IN THE AREA OF RICE PRODUCTION CENTER IN WEST JAVA. Proceeding of International Symposium for Sustainable Humanosphere, 274–282.

Soice, E., & Johnston, J. (2021). How cellular agriculture systems can promote food security. Frontiers in Sustainable Food Systems, 5, 753996.

Stone, R. C., & Meinke, H. (2007). Contingency planning for drought—a case study in coping with agrometeorological risks and uncertainties. Managing Weather and Climate Risks in Agriculture, 415–433.

Sukmaya, S. G., Hidayati, R., Perwita, A. D., & Zulkifli, L. (2022). FOOD SECURITY CONDITIONS IN EAST PRIANGAN WEST JAVA: FOOD SAFETY OR FOOD INSECURITY? MAHATANI: Jurnal Agribisnis (Agribusiness and Agricultural Economics Journal), 5(1), 201–222.

Venkat, A., Masters, W., & Naumova, E. (2022). Extreme Weather Events Differentially Impact Retail Food Prices: Evidence from Early Warning Systems. Current Developments in Nutrition, 6(Supplement_1), 82.

Virtriana, R., Riqqi, A., Anggraini, T. S., Fauzan, K. N., Ihsan, K. T. N., Mustika, F. C., Suwardhi, D., Harto, A. B., Sakti, A. D., & Deliar, A. (2022). Development of spatial model for food security prediction using remote sensing data in west Java, Indonesia. ISPRS International Journal of Geo-Information, 11(5), 284.

Waseem, M., Khurshid, T., Abbas, A., Ahmad, I., & Javed, Z. (2022). Impact of meteorological drought on agriculture production at different scales in Punjab, Pakistan. Journal of Water and Climate Change, 13(1), 113–124.

Xiao, J., Yao, Y. P., Jin, Z., Guo, F., Wang, Z., Yuan, D., & Zhang, H. (2018). Design and implementation of agricultural meteorological service platform of Zhejiang Province based on WebGIS. 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 1–5.

Unduhan

Diterbitkan

2023-10-31

Cara Mengutip

Rusmayadi, G., Salawati, U., & Suparwata, D. O. (2023). Analisis Sistem Agrometeorologi dalam Meningkatkan Ketahanan Pangan saat Kemarau. Jurnal Geosains West Science, 1(03), 143–150. https://doi.org/10.58812/jgws.v1i03.720